skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tasker, Sarah Z"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The indolizinium natural product ficuseptine, produced by the tropical fig tree Ficus septica, has been reported to have antibacterial properties. Herein, the synthesis of ficuseptine, ten analogues with differing aryl substituents, and two aryl regioisomers is reported. Despite several previous total syntheses, synthetically prepared ficuseptine has not been subjected to biological testing to confirm its activity. In our hands, ficuseptine was moderately active in Gram-positive B. spizizenii, with an MIC of 32 μg/mL, which was maintained for most aryl substituents. The position of the aryl rings was crucial, however, since regioisomeric ficuseptine analogues, mimicking related natural products, were found to be inactive. Finally, all ficuseptine derivatives were inactive (MIC >128 μg/mL) against Gram-negative E. coli. Understanding these structure–activity relationships (SAR) is helpful for future studies to understand the molecule’s mechanism of action or further develop its antibacterial properties. 
    more » « less
    Free, publicly-accessible full text available April 23, 2026